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Abstract

The purpose of this Trident Scholar project was to study a scalar field in six-

dimensional Anti-de Sitter space by extending the Randall-Sundrum model. This

model included a single scalar field and two compactified extra dimensions. One of

these extra dimensions was defined by periodic boundary conditions. The other extra

dimension was compactified and stabilized by a scalar field in the space.

The shape of the six-dimensional space was defined by its metric, a mathematical

structure that described how the length scale changes as a function of position in space

and time. The metric was required to satisfy a differential equation known as the

Einstein Field equation. By starting with some known facts about the structure of the

metric, the Einstein equation was decomposed into a system of differential equations

that were solved to find the final solution for the metric.

In addition to the requirement of the Einstein Field equation, once the scalar field

was added to the system, it needed to satisfy its own differential equation, the Klein-

Gordon equation. Perturbation methods were used to simultaneously solve the Einstein

Field equation and the Klein-Gordon equation to find the back reaction of the energy

due to the scalar field on the six-dimensional Anti-de Sitter space metric. This process

gave a new metric for the space that included the effect of the scalar field.

The physical characteristics of the newly calculated space were explored to ensure

that it satisfied the hierarchy problem as well as to determine how the laws of physics

were affected by the warping of the space.
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1 Motivation

Current theories in the physics community dictate that there are four fundamental forces in

the universe. These four forces are the following:

1. Gravity - This is the force between two particles at a distance proportional to the

masses of the two particles. In the theory of general relativity, it is the geometry of space

that defines this force.

2. Electromagnetism - This is the force on particles in an electromagnetic field that acts

at a distance. It is dependent on both the electrical charge of each particle and the speed at

which they move relative to some fixed point.

3. Weak Nuclear Force - This force governs the interactions between fundamental parti-

cles in the nucleus of an atom such as protons and neutrons. It is the force responsible for

the phenomenom of nuclear decay. This force only acts at distances similar to the diameter

of a nucleus (about 10−15m).

4. Strong Nuclear Force - This is the force between the nuclear particles, protons and

neutrons, which effectively holds the nucleus of an atom together. Just like the Weak Nuclear

Force, this force also only acts at distances similar to the diameter of a nucleus. [1]

Each of these forces have an energy scale associated with them which is used to compare

the strength of the force relative to each of the other three forces. A method in particle

physics for defining these energy scales involves manipulating the units of the scale describing

each force into a unit of energy using the fundamental constants

~ = 1.055× 10−34 J · s, c = 3.00× 108 m

s
(1)
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where ~ is Plank’s constant and c is the speed of light. In the case of gravity, the scale of

the force comes from Newton’s Gravitation Law

Fg =
Gm1m2

r2
(2)

which relates the gravitational force, Fg in units of Newtons (N), to the masses, m1 and

m2 with units kilograms (kg), and the distance, r with units of meters (m), between the

two particles. In this equation, G, known as Newton’s constant, acts as a proportionality

constant and gives us the scale of the gravitational force. In the following method, [X]

represents the units of X in basic units: kilogram, meter, and second.

G = 6.67× 10−11 N ·m2

kg2
, [G] =

m3

kg · s2
(3)

Since [~] = kg·m2

s
, Plank’s constant can be used to eliminate the mass unit from the problem.

[G~] = [G][~] =
m3

kg · s2

kg ·m2

s
=

m5

s3
(4)

[
G~
c3

] =
[G~]

[c]3
=

m5

s3

s3

m3
= m2 (5)

The term ~c is used to convert distance units to energy units because its units are J · m

where the Joule (J) is the unit of energy.

[
~c5

G
] =

[~c]2

[G~
c3

]
=

kg2 · m6

s4

m2
= kg2 · m4

s4
= J2 → [

√
~c5

G
] = J (6)

Now there is a manipulation of G that gives units of energy. The next step is to substitute

the numerical values for the constants and obtain the value for the gravitational energy scale

in GeV. √
~c5

G
=

√
(1.055× 10−34)× (3.00× 108)5

6.67× 10−11
= 1.96× 109 J (7)
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1.96× 109 J × 1 GeV

1.602× 10−10 J
= 1.22× 1019 GeV (8)

The result of this method is that the energy scale of the gravitational force is on the order

of 1019GeV. In order to find the energy scales for the other fundamental forces, notice the

masses of the fundamental particles on which the forces act and convert these masses to

energy values by using Einstein’s famous principle

E = mc2 (9)

The particle associated with the Electromagnetic force is the electron which has mass (in

energy units) of 0.511 MeV which is on the order of 10−3GeV. The Strong Nuclear force has

energy scale associated with the mass of protons and neutrons, which is on the order of 1

GeV. Finally, the Weak Nuclear force has energy scale associated with the mass of quarks,

also on the order of 1 GeV.

While the Nuclear forces and the Electromagnetic force act with energy scales that are

only slightly different, the Gravitational force is associated with an energy scale many orders

of magnitude greater than the other three fundamental forces. This difference in energy

scales accounts for the observation that, for example, the gravitational force between two

electrons is many orders of magnitude smaller than the electric force between the two charged

electrons at any given distance. The large disparity between gravity and the other forces is

known in particle physics as the Hierarchy Problem. Current theories exist which have ways

of eliminating this problem of hierarchy using extra dimensions of space. The focus of this

paper is to expand these theories by including more extra dimensions and a scalar field to

the system. [2]
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2 Background Information

2.1 Indicies and Einstein’s Summation Notation

The first step in finding a solution space is to understand the index notation and the equations

used in General Relativity. In classical physics, vectors are thought of as having three

components for a system in a three-dimensional space, one for each dimension; however, in

relativistic analysis, it is useful to include a component of time in vectors, with units of

distance, as a fourth component. An index notation is used to describe these vectors with

the time component as the zeroth index. For example, dxµ with µ=0, 1, 2, 3 represents the

vector

dxµ = (dx0, dx1, dx2, dx3) (10)

where dx0 is the time component of the vector, and dx0 = cdt because [ct]=m. These vectors

can also be written with lowered indices, dxµ by multiplying by the metric(described below)

of the associated space

3∑
µ=0

gµνdxµ = dxν = (dx0, dx1, dx2, dx3) (11)

The index in this notation can be replaced by any symbol while retaining the same meaning

as a vector; however, greek indices, such as µ and ν, will range over all dimensions of the

system, while roman indices, such as i and j, will range over the standard 3 dimensions of

space and the time dimension only. So if the system of the problem is a 5-dimensional space,

µ = 0, 1, 2, 3, 4 but i = 0, 1, 2, 3. [3]

The next useful definition is the Einstein summation notation. An Einstein summation

is the index notation version of the scalar dot product of two vectors. Let dxµ and dxν be

two four-component vectors, then the scalar dot product of these two vectors is defined as

dxµ · dxν =
3∑

µ,ν=0

gµνdxµdxν =
3∑

µ=0

dxµdxµ (12)
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where the second equality comes from equation (11). Since this type of summation appears

frequently, the summation symbol is dropped, and it is understood that the repetition of an

index with one raised and one lowered in the same term implies summation over all values

of the index. So, in the Einstein summation notation [4]

dxµdxµ =
3∑

µ=0

dxµdxµ = dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3 (13)

This notation not only reduces the visual complexity of the equations used in the problem,

it also generalizes the equations to make them valid for any number of dimensions by simply

changing the range of the indices. [3]

2.2 Definition of the Metric

Using the index and summation notations it is now possible to understand the idea of a

metric. The notion of length, or the distance between two points in a space is found by

integrating the line element from point A to point B.

L =

∫ B

A

ds (14)

where L is the length and ds is the line element which is defined in flat three-dimensional

space with cartesian coordinates as

ds2 = dx2 + dy2 + dz2 (15)

Minkowski space is a flat space with the addition of a time coordinate that is used in both

special relativity and general relativity. When expanding the flat space line element to

include the time coordinate in the way of Minkowski space, it is written as

ds2 = −c2dt2 + dx2 + dy2 + dz2 (16)
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This can then be rewritten in index notation as

ds2 = −dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3 (17)

This sum can be written using Einstein summation notation by defining a term with two

indices which gives the coefficient of each term in the sum depending on the indices of that

term. In the case of equation (17), this coefficient term, η must take the following values:

η00 = −1

η11 = 1

η22 = 1

η33 = 1

ηab = 0 for a 6= b (18)

Using these values, the line element can be written in summation notation as

ds2 = ηµνdxµdxν (19)

where ηµν can be viewed as representing the elements in a matrix in the µ-th row and the

ν-th column. Then the matrix representation of ηµν is

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(20)

This specific example is for a flat space; however, the line element can be written in the form

of equation (19) for a space of any shape by changing the coefficient terms out front. In
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general the line element of a space is given as

ds2 = gµνdxµdxν (21)

where gµν is known as the metric for that space. Equation (20) is the metric for Minkowski

space and is known as the Minkowski metric. The general metric can also be written in the

form of a matrix and can be a function of the position in space, gµν(x
α). [5]

2.3 Embedded Surfaces

A metric which describes a curved space, or any space that is not flat, can be described

as a surface embedded inside of a higher dimensional flat space. The surface of a sphere is

a curved 2-dimensional space; however, this can be thought of as existing inside of a flat,

3-dimensional space. Using this method, the non-flat metric for the surface of the sphere

can be found by imposing a contraint equation on the metric for the flat space.

The metric for flat, 3-dimensional space in cartesian coordinates is

ds2 = dx2 + dy2 + dz2 (22)

Now the equation for the surface of a sphere which is used as the constraint equation is

x2 + y2 + z2 = c2 (23)

where c is a constant representing the radius of the sphere. This equation is now solved for

one of the coordinates, in this case z, and the differential of that coordinate is found in terms
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of the other two.

z =
√

c2 − x2 − y2

dz =
−x√

c2 − x2 − y2
dx +

−y√
c2 − x2 − y2

dy

dz2 =
x2

c2 − x2 − y2
dx2 +

2xy

c2 − x2 − y2
dxdy +

y2

c2 − x2 − y2
dy2 (24)

Substituting dz2 into equation (22) gives the non-flat metric for the 2-dimensional surface

of a sphere.

ds2 =
c2 − y2

c2 − x2 − y2
dx2 +

2xy

c2 − x2 − y2
dxdy +

c2 − x2

c2 − x2 − y2
dy2 (25)

This can then be written in the form of equation (21) with

gµν =

 c2−y2

c2−x2−y2
xy

c2−x2−y2

xy
c2−x2−y2

c2−x2

c2−x2−y2

 (26)

This simple example can be generalized to any n-dimensional surface embedded in a suffi-

ciently higher dimensional space.

2.4 Einstein’s Field Equation

The metric of a space is dependent on the content of the space. A flat space like the

Minkowski metric will exist in a vacuum; however, if the content of the space is not empty,

the metric is found by solving the fundamental equation of general relativity, the Einstein

Field Equation [5] given in index notation as

Rµν −
1

2
gµνR− λgµν = −8πGTµν (27)
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In this equation, gµν is the metric of the space, G is Newton’s gravitational constant from

equation (3), Tµν is the energy-momentum tensor, which contains the information about the

energy content of the space, and λ is the cosmological constant. Rµν and R are known as

the Ricci curvature tensor and the Ricci curvature scalar, respectively. The Ricci curvature

tensor and scalar are found with the procedure described below.

First define the affine connection [5],

Γσ
λµ =

1

2
gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν

)
(28)

where the g with raised indices represents the inverse of the metric with lower indices.

Equation (28) shows that the affine connection is simply a function of the metric and its first

derivatives. The affine connection is then used to define the Reimann curvature tensor [6]

Rλ
µνκ =

∂Γλ
µν

∂xκ
−

∂Γλ
µκ

∂xν
+ Γη

µνΓ
λ
κη − Γη

µκΓ
λ
µη (29)

From equations (28) and (29), we can see that the curvature tensor is constructed from only

the metric tensor and first and second derivatives of the metric tensor. Now, by setting

the indices λ and ν to be the same in equation (29) and applying the Einstein summation

notation, we obtain the Ricci curvature tensor [5], Rµν , that appears in the Einstein Field

Equation (27)

Rµκ = Rλ
µλκ (30)

From this definition for the Ricci tensor, the curvature scalar [5], R, is found by multiplying

by the inverse of the metric

R = gµκRµκ (31)
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3 5-Dimensional AdS and the Randall-Sundrum Model

Some theories that solve the hierarchy problem employ the use of extra spatial dimensions.

One of these theories, called the Randall-Sundrum model, uses a 5-dimensional structure

known as Anti-de Sitter space to construct a space which has the neccessary properties to

solve the hierarchy problem.

3.1 Extra Dimensions

In extra-dimensional systems, the indices of the vectors and other tensors such as those

used in defining the Einstein Field Equation range over all dimensions. The zero index

term represents the time component, indices 1, 2, and 3 represent the components of the

observable three spatial dimensions, and higher numbered indices respresent the components

of the extra dimensions.

Since these extra dimensions are not seen in everyday life, they must be very small.

While the normal three spatial dimensions are thought to extend to infinity in all directions,

extra dimensions must be compactified, or have a small, finite length. One type of compact-

ified extra dimension has the condition that all points separated by integer multiples of a

finite interval are identified. These are known as periodic extra dimensions. Let x4 be the

coordinate of the extra dimension, then this condition is represented in the following way

x4 = x4 + nL n ∈ Z (32)

where L is some interval of fixed length. Since L is arbitrary, it can be represented as

L = 2πR (33)

where R is the radius of a circle, and then the interval, L, is the circumference of that circle.
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The extra dimension can then be visualized as a circle of radius R, where R will be very small

to make the dimension compact and unobservable in everyday life. An important condition

that arises from this type of compactification is that all functions of position must be well

defined in the extra dimension. For example, the metric tensor, which can be a function of

position, must satisfy

gµν(x
4) = gµν(x

4 + n2πR) (34)

Another method of compactifying an extra dimension is to simply assign boundaries to

the dimension separated by a small, finite distance. The distance of separation must be small

enough that the extra dimension is still not observable at large distances. Also, the fact that

there are boundaries imply that there must be boundary conditions for any term that is a

function of position. For example, as the position in the extra dimension approaches the

boundary, the metric tensor will approach some constant tensor:

gµν(a) = Aµν (35)

where a is the value of x4 at the boundary and Aµν is a constant tensor.

In order to better comprehend the idea of extra dimensions, it is useful to consider lower

dimensional examples. First, consider a long, straight wire and an ant crawling on the wire.

If this situation is seen from a distance much larger than the radius of the wire away, the wire

will appear as a 1-dimensional line, and the ant may only crawl along the line. However, if

viewed from a distance of the same order as the radius, the circumference of the wire becomes

apparent, and the ant can be observed moving along the long and straight wire as well as

around the circumference of the wire. If the ant walked the full length of the circumference,

it would be back in the same location that it began. This situation can be thought of as an

example of a compactified periodic extra dimension.

An example of the second type of compactified extra dimension is given by imagining the

planet Earth. A human being on the surface of the Earth may move along lines of lattitude
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or lines of longitude but is confined to the two-dimensional surface of the Earth that exists

at some constant radius. So the surface of the Earth is the normal observable dimensions

for humans confined to that two-dimensional surface, and the radial direction is the extra

dimension. Now imagine that a human gets in an airplane and takes off from the surface.

This person is now free to move in the radial direction; however, the plane is only capable

of flying to a certain altitude because it requires atmosphere to generate lift on the wings.

Therefore, the surface of the Earth and the top limit of the atmosphere act as boundaries

for the extra dimension. While in this example the extra dimension is not small, the analogy

holds for a compactified dimension in which the boundaries of the extra dimension are a

small distance apart.

3.2 Anti-de Sitter Space

Now that the concept of extra dimensions has been defined it is possible to look at an example

of a 5-dimensional space. An important example of such a space is known as Anti-de Sitter

Space. This space is the 5-dimensional vacuum solution (i.e. Tµν = 0) to Einstein’s Field

equation with a negative cosmological constant, λ < 0. [7]

Rµν −
1

2
gµνR− λgµν = 0, λ < 0 (36)

In order to start solving the Einstein equation for the Anti-de Sitter space metric, it is

neccessary to have a preliminary guess as to the form of the solution. The guess used in

finding this solution was

ds2 = −A(x4)ηijdxidxj − dx4dx4 (37)
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where A(x4) is an arbitrary function of the extra dimension, x4 [8]. This gives

ds2 = gµνdxµdxν

gµν =



A(x4) 0 0 0 0

0 −A(x4) 0 0 0

0 0 −A(x4) 0 0

0 0 0 −A(x4) 0

0 0 0 0 −1


(38)

Now that the guess for the metric is defined, the next step in solving the Einstein equation

is to unpack the index notation to find differential equations for the function A in terms of

the independent variable x4. This process involves using the definitions in section 2.2 and

the guess for the metric to write the Ricci tensor and the curvature scalar in terms of the

function A and substituting them into equation (27). Once this is done, each combination

of indices produces a differential equation in A(x4) that must be satisfied as a system of

equations. Since the metric has only diagonal terms, the Einstein equation has non-trivial

equations on the diagonal only. Using the Mathematica code found in Appendix A, these

equations are found to be

µ = ν = 0, 1, 2, 3 → 3

2

A′′(x4)

A(x4)
− λ = 0

µ = ν = 4 → 3

2

(
A′(x4)

A(x4)

)2

− λ = 0 (39)

This system of equations can be solved using standard differential equation solution methods,

and the solutions are found to be

A(x4) = e
√

2λ
3

x4

or A(x4) = e−
√

2λ
3

x4

(40)
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Since the first function goes to ∞ as x4 increases, this cannot be a solution, and the second

function is the solution to the equations. Therefore, the Anti-de Sitter space metric is given

by [8]

gµν =



e−
√

2λ
3

x4
0 0 0 0

0 −e−
√

2λ
3

x4
0 0 0

0 0 −e−
√

2λ
3

x4
0 0

0 0 0 −e−
√

2λ
3

x4
0

0 0 0 0 −1


(41)

3.3 Randall-Sundrum Model

The reason Anti-de Sitter space is such an important example of a 5-dimensional space

is because it is used in a model created by Randall and Sundrum to solve the hierarchy

problem [2]. In this model, the coefficient function, A(x4), is called the warp factor because

it changes the length scale of the space as x4 is varied. Specifically, at x4=0, the metric is that

of the normal observed universe, but as x4 increases, the length scale decreases exponentially.

From section 1 it is seen that length scale is inversely proportional to energy scale by a factor

of ~c, so as x4 increases the energy scale increases exponentially.

The Randall-Sundrum model takes advantage of this warp factor, A(x4), in the Anti-de

Sitter space metric and positions the compactifying boundary the appropriate distance such

that the energy scale ratio from one boundary to the other is approximately 1019, the same

ratio of the energy scale of gravity to the other three forces. Since from equation (14) we

see that length is the integral of the line element, the model sets this boundaries so that at

x4 = 0 ∫ B

A

√
e−
√

2λ
3

0dxi ≈ 1 (42)

and at the boundary, x4 = c, ∫ B

A

√
e
√

2λ
3

cdxi ≈ 10−19 (43)

so that the length scale ratio between the two boundaries is the desired 10−19 and the energy
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scale ratio is thus 1019.

The model then states that the particles for gravity, gravitons, are more likely to be

located at the higher energy boundary instead of the at the boundary of the normally

observed universe like the other three fundamental forces. The structure of this model

accounts for the inconsistency in gravity’s energy scale; however, it relies on the theorist to

place an arbitrary boundary at the right location along the extra dimension. [2]

4 Extension to 6 Dimensions

4.1 A 6-Dimensional Metric

Just as with 5-dimensional space, in order to do calculations in a 6-dimensions, it is first

necessary to have a guess for what the metric solution to Einstein’s equation will be. The

most logical choice for a 6-dimensional metric would be some extension of the 5-dimensional

guess for the metric. Since a periodic extra dimension can be thought of as a circle with a

radius R, the addition to the metric will come from the formula for the arclength of a circle

ds = Rdθ → ds2 = R2dθ2 (44)

Now θ is the 5th spatial dimension, so θ=x5. Then if the radius of the extra dimension is

allowed to vary as a function of the position along the warped extra dimension, x4 then the

6-dimensional guess for the metric solution is

ds2 = −A(x4)ηijdxidxj − dx4dx4 −B(x4)dx5dx5 where B(x4) = R2(x4) (45)
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This can then be written as

ds2 = gµνdxµdxν

gµν =



A(x4) 0 0 0 0 0

0 −A(x4) 0 0 0 0

0 0 −A(x4) 0 0 0

0 0 0 −A(x4) 0 0

0 0 0 0 −1 0

0 0 0 0 0 −B(x4)


(46)

4.2 Equations of Motion

Once again, now that the guess for the metric has been defined, the index notation of

Einstein’s equation needs to be unpacked into a system of differential equations in A and

B. Using the definitions in section 2.2, the guess for the 6-dimensional metric, and the

Mathematica code found in Appendix A, the following system of differential equations was

found. Note that A and B are functions of x4 only, and the argument of these functions has

been dropped for the sake of simplicity.

A

(
3

2

A′′

A
+

1

2

B′′

B
+

3

4

A′B′

AB
− 1

4

(
B′

B

)2

− λ

)
= −8πGT00

−3

2

(
A′

A

)
− A′B′

AB
+ λ = −8πGT44

B

(
−1

2

(
A′

A

)2

− 2
A′′

A
+ λ

)
= −8πGT55 (47)

The vacuum equations, in which the right side of all three equations is 0, can be solved

exactly to find a 6-dimensional form of Anti-de Sitter space. The solutions and metric for
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the vacuum condition are

A = e−
√

2λ
5

x4

, B = e−
√

2λ
5

x4

gµν =



e−
√

2λ
5

x4
0 0 0 0 0

0 −e−
√

2λ
5

x4
0 0 0 0

0 0 −e−
√

2λ
5

x4
0 0 0

0 0 0 −e−
√

2λ
5

x4
0 0

0 0 0 0 −1 0

0 0 0 0 0 −e−
√

2λ
5

x4


(48)

In the Anti-de Sitter space metric, the radius of the 6th dimension, given by
√

B does not

go to 0 until x4 goes to ∞. This means that the space extends to infinite size and is not

compactified. In order to change the shape of the space so that the radius goes to 0 at a

finite value of x4, there must be some energy in the system that causes the shape of the

space to change. This energy can be added in the form of a scalar field so that the energy-

momentum tensor is non-zero. This will give a non-zero right hand side of the equations of

motion and force the solution space to be a different metric. This scalar field also adds an

additional constraint to the system by adding a fourth differential equation to the system

of equations already found from the Einstein equation. This equation, known as the Klein-

Gordon equation, is the equation of motion for the scalar field and is given by

1√
|g|

∂

∂xµ

(√
|g|gµν ∂

∂xν
φ

)
= −∂V (φ)

∂φ
(49)

where |g| is the determinant of the matrix form of the metric, φ is the scalar field, and V (φ)

is the scalar field potential. For the purposes of this paper, it can be assumed that the

scalar field is only a function of the position along the warped extra dimension, x4. Given

a known potential, the Einstein equaion and the Klein-Gordon equation must be solved
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simultaneously to find non-vacuum solutions for A, B, and φ as functions of x4. [9]

4.3 Energy-Momentum Tensor

In order to find a non-vacuum solution space for the metric, it is first necessary to define the

energy-momentum tensor in terms of the scalar field. This tensor is the term that makes

the right hand side of the Einstein equation non-zero and gives rise to additional curvature

in the solution space. The energy momentum tensor is defined as [5]

Tµν =
∂φ

∂xµ

∂φ

∂xν
− gµν

(
1

2
gρσ ∂φ

∂xρ

∂φ

∂xσ
− V (φ)

)
(50)

Using this definition, the values for the energy-momentum tensor in equation (43) are found

to be

T00 = A

(
V (φ) +

1

2
φ′2
)

T44 = −V (φ) +
1

2
φ′2

T55 = −B

(
V (φ) +

1

2
φ′2
)

(51)

where derivatives of φ with respect to other dimensions vanish because φ is only a function

of x4. The general system of differential equations for finding a non-vacuum solution space

metric is

µ, ν = 0, 1, 2, 3 → 3

2

A′′

A
+

1

2

B′′

B
+

3

4

A′B′

AB
− 1

4

(
B′

B

)2

− λ = −2κV (φ)− κφ′2

µ, ν = 4 → 3

2

(
A′

A

)2

+
A′B′

AB
− λ = 2κV (φ)− κφ′2

µ, ν = 5 → 1

2

(
A′

A

)2

+ 2
A′′

A
− λ = −2κV (φ)− κφ′2

φ′′ +

(
1

2

B′

B
+ 2

A′

A

)
φ′ = −∂V (φ)

∂φ
(52)



22

where κ = 4πG.

4.4 Solutions to the Equations

Ideally, a general solution to this system of equations could be found for A, B, and φ as

functions of x4 and in terms of integrals of the scalar field potential, V (φ). This would give

formulae for these functions given any potential function, and allow for the trying of different

scalar field potentials to see the effect on the solutions. However, each of these equations is

non-linear in nature, and there is no standard mathematical method for solving non-linear

differential equations.

Similar methods to finding the vacuum solution were tried but were unsuccessful due

to the coupled nature of the Einstein and Klein-Gordon equations through the scalar field.

Another method for solving these types of equations in 5 dimensions, known as the super-

potential method, writes the scalar field potential in terms of another function of φ. It does

this in such a way that the equations are decoupled into an equation for A and an equation

for φ both in terms of the superpotential function. This was very effective for solving the

5-dimensional equations; unfortunately, since this method evolved from supersymmetry the-

ory, it would require 6-dimensional supersymmetry calculations to attempt to extend this

method to decouple the 6-dimensional system of equations. [10] These types of calculations

are beyond the scope of this project.

It became clear that it would be difficult to find an exact analytical solution to the

6-dimensional system of equations for a general scalar field potential. An approximation

method of solving the system of differential equations would be used.

5 Perturbation Theory Solution

An approximation method that met with success used perturbation theory to find small order

corrections to the vacuum solution to Einstein’s equation in six dimensions. This method
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mimicked the methods of Goldberger and Wise to find a small scalar field to compactify the

x4 dimension. This scalar field was then used to find the change in the metric. [11]

5.1 A Different Form of the Equations

In order to more easily work with the metric to find the back reaction due to the small scalar

field used in the Goldberger-Wise mechanism, it is helpful to rewrite the current system of

differential equations into a different form using a simple substitution.

A = eσ

B = eτ (53)

By defining A and B this way, the first and second derivatives of these functions are

A′ = σ′eσ

B′ = τ ′eτ

A′′ =
(
(σ′)

2
+ σ′′

)
eσ

B′′ =
(
(τ ′)

2
+ τ ′′

)
eτ (54)

Now the system of differential equations in A, B, and φ becomes a system of equations in

σ, τ , and φ. Again, all functions are functions of x4 only unless otherwise specified.

3

2
σ′′ +

1

2
τ ′′ +

3

2
σ′2 +

1

4
τ ′2 +

3

4
σ′τ ′ − λ = 2κV (φ) + κφ′2 (55)

3

2
σ′2 + σ′τ ′ − λ = 2κV (φ)− κφ′2 (56)

2σ′′ +
5

2
σ′2 − λ = 2κV (φ) + κφ′2 (57)

φ′′ +

(
1

2
τ ′ + 2σ′

)
φ′ =

∂V (φ)

∂φ
(58)
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This functional substitution does not constrain the system in any way by eliminating possible

solutions, and it is useful because it eliminates the fraction terms in the original equations.

This set of equations is the set that will be used to find the perturbation solution.

5.2 A Redundant Equation

Before a solution to the above system of differential equations is found, it is necessary to

show that a solution can exist. Since there are three unknown functions to be solved, σ,

τ , and φ, but there are four functions, it is possible that the system is overconstrained and

no solutions would exist. In order for a solution to exist, there must be a redundancy in

the equations, or one equation must be able to be written from the other three. To see this

relationship, first take the derivative of both sides of equation (56) with respect to x4.

3σ′σ′′ + σ′′τ ′ + σ′τ ′′ = 2κV ′(φ)φ′ − 2κφ′φ′′ (59)

Now add each side of equation (59) to each side of equation (58) multiplied by 2κφ′.

3σ′σ′′ + σ′′τ ′ + σ′τ ′′ = (τ ′ + 4σ′)κφ′2 (60)

Now subtract equation (55) from equation (56) and multiply both sides by 2σ′ to get

1

2
σ′2τ ′ − 3σ′σ′′ − 1

2
σ′τ ′2 − σ′τ ′′ = −4κσ′φ′2 (61)

Adding equations (60) and (61) cancels terms on each side of the equations.

σ′′τ ′ +
1

2
σ′2τ ′ − 1

2
σ′τ ′2 = τ ′κφ′2 (62)
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To get rid of the fractions and a factor of τ ′, multiply both sides of this equation by 2
τ ′

.

2σ′′ + σ′2 − σ′τ ′ = 2κφ′2 (63)

Finally, adding equation (56) to equation (63) yields

2σ′′ +
5

2
σ′2 − λ = 2κV (φ) + κφ′2 (64)

which is the same as equation (57). This relationship shows that equation (57) can be written

as a combination of equations (55), (56), and (58). Therefore, there is at least one redundant

equation in the system, and so it can not be over constrained. A solution can exist and can

be found using only 3 of the equations such that it is consistant with the remaining equation.

5.3 Zeroth Order Scalar Field Solution

The Goldberger-Wise technique involves placing boundary conditions on the scalar field

function at x4 = 0 and x4 = c where c eventually becomes the length of the compactified

extra dimension x4. This method then uses the zeroth order, or Anti-de Sitter space solution

for A and B substituted into the Klein-Gordon equation with the simplest choice for the

scalar field potential, V (φ) = m2φ2, to solve for the scalar field, φ. Since in Anti-de Sitter

space A′

A
= B′

B
=
√

2λ
5
x4, the Klein-Gordon equation in equation (45) becomes

φ′′ − kφ′ −m2φ = 0 (65)

with k = 1
2

√
2λ
5

+ 2
√

2λ
5

= 5
2

√
2λ
5

=
√

5λ
2

. Using standard differential equations techniques,

the solution to for the scalar field is found to be

φ(x4) = e
kx4

2

(
C1e

ν kx4

2 + C2e
−ν kx4

2

)
(66)
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where C1 and C2 are constants of integration defined by the boundary conditions and ν =√
1 + 4m2

k2 . Using the assumption that m2

k2 << 1 so that ν = 1+ ε, ε = 2m2

k2 and the boundary

conditions φ(0) = φ0 and φ(c) = φc, the constants of integration are found to be

C1 = φce
−(1+ν) k

2
c − φ0e

−νkc

C2 = φ0

(
1 + e−νkc

)
− φce

−(1+ν) k
2
c (67)

Substituting these constants into equation (47) gives the explicit solution for φ

φ(x4) = φc

(
e(1+ν) k

2
(x4−c) − e

k
2
(x4−c−ν(x4+c))

)
−φ0

(
e

k
2
(1+ν(x4−2c)) − e(1−ν) k

2
x4 − e

k
2
(1−ν(x4+2c))

)
(68)

This solution for φ is the zeroth-order solution and because of the assumptions used, it is

a small valued scalar field. The small value of the scalar field means that it will provide a

small order perturbation from the Anti-de Sitter metric. [11]

5.4 A Non-Vacuum Solution

The technique to find the perturbation solution involves writing the final forms of σ and τ

as a combination of the zeroth order (AdS) solution plus some small order correction term.

σ = σ0 + ασ1

τ = τ0 + ατ1 (69)

where α << 1 and σ1 and τ1 are the correction functions to be solved for. It is important to

note that α is of the same order as φ2
0 and φ2

c in order to perform the perturbation technique.

These relations for σ and τ as well as the solution for φ found in section 5.1 are substituted
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into equations (56) and (57)

3

2
σ′2

0 + 3ασ′
0σ

′
1 +

3

2
α2σ′2

1 + σ′
0τ

′
0 + ασ′

0τ
′
1

+ασ′
1τ

′
0 + α2σ′

1τ
′
1 − λ = 2κm2φ2 − κφ′2

2σ′′
0 + 2ασ′′

1 +
5

2
σ′2

0 + 5ασ′
0σ

′
1 +

5

2
α2σ′2

1 − λ = −2κm2φ2 − κφ′2 (70)

Since α << 1, α2 is negligable and is be assumed to be zero. Now, grouping terms with σ0

and τ0 only, we get

(
3

2
σ′2

0 + σ′
0τ

′
0 − λ

)
+ 3ασ′

0σ
′
1 + ασ′

0τ
′
1 + ασ′

1τ
′
0 = 2κm2φ2 − κφ′2(

2σ′′
0 +

5

2
σ′2

0 − λ

)
+ 2ασ′′

1 + 5ασ′
0σ

′
1 = −2κm2φ2 − κφ′2 (71)

The expressions inside the parentheses are the left hand side of these equations for the

vacuum solution, so the expressions inside the parentheses are equal to 0. Taking these

terms to zero and substituting the known values for σ0 and τ0 into the remainder of the

equation, they become

3α

√
2λ

5
σ′

1 + α

√
2λ

5
τ ′1 + ασ′

1

√
2λ

5
= 2κm2φ2 − κφ′2

2ασ′′
1 + 5α

√
2λ

5
σ′

1 = −2κm2φ2 − κφ′2 (72)

Now there is a linear system of inhomogeneous equations for σ1 and τ1 that are easily solved

by standard differential equation solving techniques. The solutions are found to be

σ1 = −κ

2

((
φce

−(1+ν) k
2
c − φ0e

−νkc
)2 νk2 + 2m2

ν(1 + ν)k2
e(1+ν)kx4

+
(
φce

−(1+ν) k
2
c − φ0e

−νkc
)(

φ0

(
1 + e−νkc

)
− φce

−(1+ν) k
2
c
)

(4m2 + (1− ν)k2)
(x4

k
− 1

k2

)
ekx4

+2
(
φ0

(
1 + e−νkc

)
− φce

−(1+ν) k
2
c
)2 m2

ν(1− ν)k2
e(1−ν)kx4

)
(73)
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τ1 = κ
(
φce

−(1+ν) k
2
c − φ0e

−νkc
)2
(

νk2 − 2m2

(1 + ν)k2
+ 2

νk2 + 2m2

ν(1 + ν)k2

)
e(1+ν)kx4

+κ
(
φce

−(1+ν) k
2
c − φ0e

−νkc
)(

φ0

(
1 + e−νkc

)
− φce

−(1+ν) k
2
c
)

(
2(4m2 + (1− ν)k2)

(
x4

k
− 1

k2

)
−
(

4m2 − (1− ν)k2

k2

)
ekx4

+κ
(
φ0

(
1 + e−νkc

)
− φce

−(1+ν) k
2
c
)2
(

4

ν
+ 1

)
e(1−ν)kx4

)
(74)

6 Analysis

It is necessary to determine the length of the x4 dimension. This can be done using a method

developed by Goldberger and Wise [11]. This procedure involves the calculus of variations

which is reviewed below.

6.1 An Action Formulation

The action, S, is defined by an integral over time

S =

∫ t2

t1

L(qi(t),
dqi(t)

dt
)dt (75)

where the Lagrangian, L, is a function of i generalized coordinates, qi(t), and their respective

velocites, dqi(t)
dt

. Hamilton’s principle states that any system will act so that the action is at

a minimum or stationary value. It can be shown that the action is minimized at a solution

to the Euler-Lagrange equations.

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0 (76)

These equations will, for the correct choice of qi, return the well known form of Newton’s

force law, but it is also capable of giving equations of motions for much more complicated
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systems [13]. In particular, it can be generalized to relativistic systems and systems with

fields.

Unlike a system of particle where the set of generalized coordinates is discrete, for a

field, the set of generalized coordinates must be continuous. To include relativistic fields, the

Langrangian in the action must be written as an integral of a Lagrangian density, L, over

all space.

S =

∫ t2

t1

∫
L(φ, ∂µφ)d5xdt (77)

In the case of the scalar field, the action is then given as

S =
1

2

∫ t2

t1

∫
√

g
(
gµν∂µφ∂νφ−m2φ2

)
d5xdt (78)

The Euler-Lagrange equation from the action for a scalar field yields the Klein-Gordon

equation.

6.2 Finding the Length of x4

The scalar field action can now be used to find the the length of the x4 dimension. The

length of the x4 dimension will be the value of c for which the action takes a minimum value

by Hamilton’s principle. The solution for φ found above is substituted into the action and

integrated. The x4 integral will have lower bound 0 and upper bound c, so the action will be

a function of c, the length of the x4 dimensions. Since the scalar field being substituted is a

function only of x4, all other spatial integrals will result in numerical factors that will divide

out later. So it is now possible to think of the action as a function of c only. Basic calculus

techniques find a minimum of a function by finding the zeros of the function’s derivative. To

find the value of c for which the action takes a minimum value, as required by Hamilton’s

principle, the derivative of the action with respect to c is set to zero and solved for a value
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of c. Since the action is essentially given as

S(c) =

∫ c

0

√
g
(
gµν∂µφ∂νφ−m2φ2

)
dx4

=

∫ c

0

e
4σ(x4)+τ(x4)

2

(
−(φ′(x4))2 −m2(φ(x4))2

)
dx4 (79)

the fundamental theorem of calculus shows that

d

dc
S(c) =

d

dc

∫ c

0

e
4σ(x4+τ(x4)

2

(
−(φ′(x4))2 −m2(φ(x4))2

)
dx4

= e
4σ(c)+τ(c)

2

(
−(φ′(c))2 −m2(φ(c))2

)
(80)

In this expression, σ and τ are the solutions to Einstein’s equation with the perturbation

corrections, and φ is the solution to the Klein-Gordon equation found earlier. By setting

this derivative of the action equal to 0 and substituting those solutions into the equation, c,

the length of the x4 dimension can be determined in terms of the parameters of the system

such as the mass of the scalar field and its boundary values.

6.3 The Hierarchy

The original purpose of the length scale variation of the Randall-Sundrum model was to

explain the energy hierarchy between gravity and the other fundamental forces. The Randall-

Sundrum model required that the x4 dimension have an energy scale hierarchy of about

nineteen orders of magnitude. Now that the space has an added extra dimension and further

warping due to the scalar field, it is necessary to check that the new space still maintains the

necessary length scale ratio to satisfy the hierarchy problem. In the metric, the warp factor

is the square root of the coefficient function for the standard 4-space. So the length scale at

any point along x4 is given by the function
√

eσ(x4). To test if this space has the required

hierarchy, it is only necessary to compare the values of that function at each end of the

space. For the following values of the system parameters: m = .09k, φ0 = 1.5, and φc = 1,
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the length of x4 is determined to be c = 220. These values also give length scale values at

x4 = 0,
√

eσ(0) = O(1), and at x4 = c,
√

eσ(c) = O(10−19). This shows that the length scale

ratio between the two ends of the x4 dimension is approximately 10−19, the nineteen orders

or magnitude difference needed to satisfy the hierarchy problem.

6.4 Length Scale Effects

Another useful analysis of the changes made to the space by the scalar field perturbations

is the effect on the relative size of the extra dimensions. In the following pictures, the two

dimensional surface represents the two extra spatial dimensions. Every point on the surface

contains a 4-dimensional space. For an observer at x4 = 0 trying to measure the radius of

the x5 dimension at other positions along x4, that observer would see the radius term in the

metric,
√

eτ(x4). This would give the observer at x4 = 0 the impression that the radius of x5

falls of exponentially. This is depicted in Fig. 1.

Figure 1: The apparent shape of the space for an observer stuck at x4 = 0.

This point of view, however, does not effectively visualize how the shape of the space

changes when the scalar field is added, since for perturbation theory, changes in σ and τ are

small. A better way to view the shape of the space is from an observer moving along the x4

dimension. As the observer moves along that warped extra dimension, the measurement of
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the radius of the x5 dimension has to be relative to the length scale at that point. To see

this more intuitively, the metric can be rewritten by factoring out the warp factor from all

but the x4 term.

ds2 = eσηµνdxµdxν − (dx4)2 − eτ (dx5)2 = eσ

(
ηµνdxµdxν − eτ

eσ
(dx5)2

)
− (dx4)2 (81)

From this form of the metric, it can be seen that the rescaled radius of the x5 dimension is

given by
√

eτ

eσ . For the 6-D AdS solution, the shape of the space as measured by an observer

moving along x4 is shown in Fig. 2. This figure shows that the radius appears constant. It

Figure 2: The shape of the AdS space for an observer moving on x4

was determined above that, for the 6-D AdS space, σ = τ , so the radius is a constant 1 at

every point on x4. When the perturbation solutions are plotted in the same way, the result

is significantly different. Fig. 3 shows the shape of the perturbed space after including the

scalar field. While the net effect on each function σ and τ is small under perturbation theory,

it can have a large effect on the radius measured by an observer moving on x4. Specifically,

the radius appears to grow as the observer moves along the x4 dimension.
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Figure 3: The shape of the perturbed space for an observer moving on x4.

7 Effects on Physical Laws

An important aspect of understanding the characteristics of a space is to know how physical

laws behave in the space. The best way to investigate how the warped space affects these

physical laws is to examine a specific law and how it changes under the warping of the space.

Some of the most well known and fully developed physical laws are Maxwell’s equations of

electromagnetism.

7.1 Classical Maxwell Equations

In classical physics, Maxwell’s equations give a complete theory to describe the interactions

of electromagnetic fields. These equations are typically viewed as four separate equations

given from four separate physical laws. These fours laws are Gauss’s law, Gauss’s law for
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magnetism, Faraday’s law, and Ampere’s law and they are given by the following equations:

~∇ · ~E = 4πρ (82)

~∇× ~E = −1

c

∂ ~B

∂t
(83)

~∇ · ~B = 0 (84)

~∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t
(85)

The first of these, Gauss’s law, is typically used to derive the formula for the electric potential

by using the fact that electric field ~E is the negative gradient of the potential, Ve.

~∇ · ~E = ~∇ · (−~∇Ve) = ∇2Ve = −4πρ (86)

For a stationary point particle, such as an electron, the solution to this differential equation

gives the formula for the electric potential.

Ve(~x) =
q

4πε0 |~x− ~x0|
(87)

where ~x0 is the position of the particle. This formula shows that in classical physics, the

electric potential attenuates as the inverse of the distance from the particle. This is useful

for the classical, three-dimensional case; however, to derive formulas such as that for the

electric potential in higher dimensional spaces or warped spaces, it is necessary to generalize

these equations into index notation form. By defining an indexed vector known as the vector

potential such that Aµ = (Ve, ~A) and the current density, jν = (4πρ,~j), Maxwell’s equations

can be rewritten as the following general equations:

Fµν = ∂µAν − ∂νAµ (88)

∂µF
µν = 4πjν (89)
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where Fµν is called the Electromagetic field tensor. By examining these equations for the

stationary point particle case above, it is determined that Aµ = (Ve, 0) and jν = (4πρ, 0),

and the equations reduce to the form of Gauss’s law given above.

7.2 Generalized Maxwell Equations

Using this indexed form for the Maxwell equations, it can be extended to the six-dimensional

model with warped spaces to give the formula for the electric potential in that space. How-

ever, since the space is warped and Maxwell’s equations need to maintain the same form,

all partial derivatives must be replaced with what is known as a covariant derivative. This

derivative, designated by a capital Dµ, is the normal partial derivative plus an additional

affine connection term for every order of the tensor. For example, the E-M tensor is of order

two, so it’s the above equation becomes

DµF
µν = ∂µF

µν + Γµ
µσF

σν + Γν
µρF

µρ (90)

By breaking this down using the definitions in section 2.4, it can be shown that the covariant

derivative of the E-M tensor can be given as

DµF
µν =

1
√

g
∂µ (

√
gF µν) (91)

Since the E-M field tensor is defined with lowered indices, the inverse tensor must be lowered

in the above formula by multiplying by the inverse metric tensor.

F µν = gµαgβνFαβ = gµαgβν (∂αAβ − ∂βAα) (92)

DµF
µν =

1
√

g
∂µ

(√
ggµαgβν (∂αAβ − ∂βAα)

)
= 4πjν

Since the purpose of this analysis is to determine the formula for the electric potential, the

necessary equation is β = 0 and, because gβν is a diagonal tensor, ν must be 0 as well to
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have a non-trivial equation. These substitutions give

1
√

g
∂µ

(√
ggµαg00 (∂αA0 − ∂0Aα)

)
= 4πj0 (93)

This equation can be simplified by noticing that ∂0 represents the time derivative, and Aα

is constant in time, so that term is 0. Also, from definitions, j0 = cρ, A0 = Ve, g00 = e−σ,

and
√

g = e
4σ+τ

2 . The new differential equation is then

e
−(4σ+τ)

2 ∂µ

(
e

4σ+τ
2 gµαe−σ∂αVe

)
= 4πcρ (94)

The final step to getting the differential operator for Ve is to sum the repeated indices, α

and µ, over all indices keeping in mind that α = 0 gives a trivial equation since the vector

potential is constant in time, and that the metric tensor is diagonal, so only terms with

α = µ give a non-trivial equation. The final differential equation then becomes

(
e−2σ∇2

3D + e−σ ∂2

(∂x4)2
+ e−σ

(
2σ′ + τ ′

2

)
∂

∂x4
+ e−(σ+τ) ∂2

(∂x5)2

)
Ve = −4πcρ (95)

Now that the differential equation for the electric potential has been found for the warped

space, it must be solved using the theory of Green’s functions.

7.3 Finding a Green’s Function

A standard method for solving the above type of second-order differential equations is by

what is known as a Green’s function. A Green’s function is a function with the following

property. Let D be a differential operator acting on some function f(x) in a differential

equation

Df(x) = h(x) (96)
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where h(x) is a function of x that is the right side of the equation. Then the Green’s function,

g(x, x′) is defined so that

Dg(x, x′) = δ(x− x′) (97)

where δ(x− x′) is a Dirac delta function. Once the Green’s function is found from this new

differential equation, then the solution to the original equation is given by

f(x) =

∫
g(x, x′)h(x′)dx′ (98)

This method could be used to find the solution to the above differential equation, but one of

the major issues of this process is finding the Green’s function for a complicated differential

operator like the one above. One way to solve this type of problem is to decompose the

Green’s function and the delta function into linear combinations of the the eigenfunctions of

D. Eigenfunctions are functions that, when operated on by the differential operator, return

the same function multiplied by some scalar factor called the eigenvalue. So if

Dfn(x) = λnfn(x) (99)

then the Green’s function and the delta function can be written as

G(x, x′) =
∞∑

n=0

an(x′)fn(x)

δ(x− x′) =
∞∑

n=0

bn(x′)fn(x) (100)

Now that the functions have been decomposed, the next step is to find the coefficients of

the summations. This is done by using inner products and the fact that the eigenfunctions
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form an orthonormal basis. This means then that

∫
f ∗

m(x)δ(x− x′)dx =
∞∑

n=0

bn(x′)

∫
f ∗

m(x)fn(x)dx

f ∗
m(x′) =

∞∑
n=0

bn(x′)δmn = bm(x′) (101)

where δmn is the Kroneker delta. Substituting this relation back into the definition for the

delta function, the delta function is now written as

δ(x− x′) =
∞∑

n=0

f ∗
n(x′)fn(x) (102)

Next, to find the coefficients of the Green’s function decomposition, it is necessary to sub-

stitute the decompositions into the differential equation.

D

(
∞∑

n=0

an(x′)fn(x)

)
=

∞∑
n=0

f ∗
n(x′)fn(x)

Since the differential operator only acts on x and not x′, the an(x′) coefficients are constant

with respect to the operator. Therefore, the operator acts on the eigenfunctions and returns

the same function back with the respective eigenvalue. Therefore the resulting equality

becomes
∞∑

n=0

an(x′)Dfn(x) =
∞∑

n=0

an(x′)λnfn(x) =
∞∑

n=0

f ∗
n(x′)fn(x) (103)

Once again using the fact that the eigenfunctions are orthogonal, the coefficients of each

eigenfunction term must be equal, so

an(x′) =
f ∗

n(x′)

λn

(104)



39

Now the Green’s function can be written explicitly as a summation of eigenfunctions and

eigenvalues by

G(x, x′) =
∞∑

n=0

f ∗
n(x′)fn(x)

λn

(105)

Finally, the solution to the initial differential equation can be found by getting the eigen-

functions of the differential operator and using Green’s function theory to find the solution

for f(x).

7.4 Electric Potential in Warped Space

Now that the theory of Green’s functions has been developed, it can be used to solve

the“Gauss’s Law” in the extra-dimensional warped space and find the formula for the elec-

tric potential in this space. Since the solution of the equation can be found by knowing the

Green’s function and the Green’s function can be written as a sum of the eigenfunctions and

eigenvalues, all that is left to do is solve for the eigenfunctions of the differential operator.

For this specific example, the charge density will be a single point charge. This will give

ρ(x) = qδ5(x) where q is the magnitude of the charge and x′ is the location of the point

charge. The differential equation can then be rescaled by multiplying both sides by e2σ to

give

(
∇2

3D + eσ ∂2

(∂x4)2
+ eσ

(
2σ′ + τ ′

2

)
∂

∂x4
+ eσ−τ) ∂2

(∂x5)2

)
Ve(x

µ) = −4πqe2σδ5(x) (106)

Since σ and τ are complicated functions in the perturbed space, solving this equation would

be very difficult. For the sake of simplicity, the equation will be solved for the 6-D AdS

space. This will still show that a warped, extra-dimensional space has an effect on the laws

of physics. In this case σ = τ =
√

2λ
5
x4 = αx4 where α is a constant. The eigenfunctions of

the simplified operator will the solutions to the following equation

(
∇2

3D + eαx4 ∂2

(∂x4)2
+ eαx4 3

2
α

∂

∂x4
+

∂2

(∂x5)2

)
fn(xµ) = λnfn(xµ) (107)



40

Next, perform separation of variables by letting fn(xµ) be a product of functions of single

variables

fn(xµ) = X1(x
1)X2(x

2)X3(x
3)X4(x

4)X5(x
5) (108)

The result of this substitution is the equation

X ′′
1 (x1)

X1(x1)
+

X ′′
2 (x2)

X2(x2)
+

X ′′
3 (x3)

X3(x3)
+ eα X ′′

4 (x4)

X4(x4)
+ eα 3

2
α

X ′
4(x

4)

X4(x4)
+

X ′′
5 (x5)

X5(x5)
= λn (109)

By standard methods in separation of variables, the first three terms and the last term are

each equal to a separate constant −w2
i . Therefore, the solutions are

X1(x
1) = A1e

iw1x1

(110)

X2(x
2) = A2e

iw2x2

(111)

X3(x
3) = A3e

iw3x3

(112)

X5(x
5) = A5e

iw5x5

(113)

Also, since the x5 dimension has periodic boundary conditions, the w5 eigenvalue is quantized

as w5 = 2nπ
L

where L is the circumference of the x5 dimension. The differential equation can

now be reduced to a function of x4 only.

X ′′
4 (x4)

X4(x4)
+

3

2
α

X ′
4(x

4)

X4(x4)
= e−αx4

(λn + w2
1 + w2

2 + w2
3 + w2

5) (114)

Now that four out of the five solutions have been found, another method is required for

finding the solution for X4(x
4) because it is not possible to write the eigenvalues explicitly.

Going back to the formula for the Green’s function, and substituting the known solutions
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into the formula, the expressions can be written as

G(x, x′) =
∑

Aei(w1(x1−x1′)+w2(x2−x2′)+w3(x3−x3′)+w5(x5−x5′))X
∗
4 (x4′)X4(x

4)

λn

δ(x− x′) =
∑

Aei(w1(x1−x1′)+w2(x2−x2′)+w3(x3−x3′)+w5(x5−x5′))δ(x4 − x4′) (115)

Since solutions for the X4 functions are being looked for, these expressions can be simplified

by grouping the functions into the two expressions

M(xi, xi′, x5, x5′) = Aei(w1(x1−x1′)+w2(x2−x2′)+w3(x3−x3′)+w5(x5−x5′)) (116)

N(x4, x4′) =
X∗

4 (x4′)X4(x
4)

λn

(117)

An equation for N(x4, x4′) is found by putting going back to the Green’s function equation

DG(x, x′) = δ(x− x′)(
∇2

3D + eαx4 ∂2

(∂x4)2
+ eαx4 3

2
α

∂

∂x4
+

∂2

(∂x5)2

)(∑
MN

)
=

∑
Mδ(x4 − x4′)∑

−(w2
1 + w2

2 + w2
3 + w2

5)MN + eαx4

MN ′′ + eαx4 3

2
αMN ′ =

∑
Mδ(x4 − x4′)

By dividing out the M in each term and defining β2 = (w2
1 + w2

2 + w2
3 + w2

5) a differential

equation in terms of only x4 is left.

eαx4

N ′′ + eαx4 3

2
αN ′ − β2N = δ(x4 − x4′) (118)

This differential equation has solutions

N(x4, x4′) = e−
3
4
αx4

(
CI 3

2
(
2β

α
e−

α
2 ) + DK 3

2
(
2β

α
e−

α
2 )

)
(119)

where I 3
2
(2β

α
e−

α
2 ) and K 3

2
(2β

α
e−

α
2 ) are modified Bessel functions of the first and second kind,

respectively. For the sake of simplicity of notation, these functions will be written from now
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on as Ix and Kx where x is the position on x4 where the function is evaluated. Becuase this

is the homogeneous solution the differential equation, it is the solution on either side of the

delta function, and must satisfy boundary conditions are the singularity. First, the solution

must be defined on either side of the singularity

N< = e−
3
4
αx4

(C<Ix4 + D<Kx4)

N> = e−
3
4
αx4

(C>Ix4 + D>Kx4)

and have then apply the following boundary conditions to find the four coefficients.

N<(x4′) = N>(x4′) → (C<Ix4′ + D<Kx4′) = (C>Ix4′ + D>Kx4′)

∂N>(x4′)

∂x4
− ∂N<(x4′)

∂x4
= e−αx4′ → (C> − C<)(I ′x4′ −

3

2
αIx4′)

+(D> −D<)(K ′
x4′ −

3

2
αKx4′) = e−

1
4
αx4

∂N<(0)

∂x4
= 0 → C<(I ′0 −

3

2
αI0)−D<(K ′

0 −
3

2
αK0) = 0

∂N>(c)

∂x4
= 0 → C>(I ′c −

3

2
αIc)−D>(K ′

c −
3

2
αKc) = 0

To further simplify the notation, define Ĩx = I ′x− 3
4
αIx and K̃x = K ′

x− 3
4
αKx. The solutions

for the coefficients are then

C< = K̃0(Ix4′K̃c − ĨcKx4′)
e−

1
4
αx4′

α
2
(ĨcK̃0 − Ĩ0K̃c)

(120)

D< = −Ĩ0(Ix4′K̃c − ĨcKx4′)
e−

1
4
αx4′

α
2
(ĨcK̃0 − Ĩ0K̃c)

(121)

C> = K̃c(Ix4′K̃0 − Ĩ0Kx4′)
e−

1
4
αx4′

α
2
(ĨcK̃0 − Ĩ0K̃c)

(122)

D> = −Ĩc(Ix4′K̃0 − Ĩ0Kx4′)
e−

1
4
αx4′

α
2
(ĨcK̃0 − Ĩ0K̃c)

(123)

Now that there is a complete solution for the function N(x4, x4′), the Green’s function
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can be completed and used to write the solution for the electric potential, Ve. The solutions

for the electric potential would be given as

Ve =

∫
d5x′

∑
w1,w2,w3,w5

ei(w1(x1−x1′)+w2(x2−x2′)+w3(x3−x3′)+w5(x5−x5′))e−
3
4
αx4

(C>(x4′)Ix4 + D>(x4′)Kx4)e2αx4′
(−4πq)δ5(xµ′) (124)

where C and D are given above depending on which side of the source the formula is being

evaluated. Also, since the sum in this formula is a sum over all eigenvalues and β2, inside

the argument of the Bessel functions, is defined in terms of eigenvalues. The introduction of

Bessel functions shows that the solution is affected by the extra dimensions and the warping

of the space [14].

8 Conclusions

We used the dimensionally independent tensor form of Einstein’s equation in 6-dimensions

to find a system of equations for the coefficient functions in the metric. The vacuum solution

to these equations gave a 6-dimensional form of Anti-de Sitter space with a warped extra

dimension, x4 and a periodic extra dimension, x5. We then added a scalar field to the system

that was forced to satisfy the Klein-Gordon equation. Using the methods of Goldberger

and Wise, we were able to find the zeroth order solution for the scalar field. This zeroth

order solution was then used to calculate the energy momentum tensor for the system of

Einstein’s equations and perturbation methods were used to find the back reaction on the

metric coefficient functions. This gave a non-vacuum solution for the metric in 6-dimensions.

Once we found a non-vacuum perturbation solution to the metric, we continued to follow

the methods of Goldberger and Wise by substituting the small order scalar field, φ(x4), back

into the action and evaluating the integral to get a formula for the action as a function of

c, the length of the newly compactified extra dimension, x4. Since, according to Hamilton’s
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Principle, the space must behave so that the action is takes its minimum value, standard

calculus techniques were used to find the value of c where the action is a minimum. This

value for c is the finite length of the x4 dimension. For the space to remain consistent with

the Randall-Sundrum model, the length of the x4 dimension must be sufficient for the warp

factor to provide the necessary energy scale difference to satisfy the hierarchy problem. It

was determined that the warped space had the appropriate energy hierarchy for parameter

values m = .09k, φ0 = 1.5, φc = 1, and c = 220. [11]

The next step in the analysis of this perturbation solution was to see how the shape of

the space was affected by the inclusion of a scalar field. This was checked by looking at

the solution for the function B(x4). Since B(x4) represents the square of the radius of the

periodic extra dimension, the extra-dimensional space was plotted as a surface of rotation.

However, since the perturbation changes to B(x4) were required to be small, the plots of

B(x4)
A(x4)

as the square of the radius were more effective at revealing the change that the scalar

field had on the shape of the space. From these plots, it was evident that the radius of the

space, as measured by an observer moving along x4, grew along x4 in the perturbed space.

Finally, we showed that the laws of physics can be affected by the addition of extra

dimensions or warping in the space. Using the example of the electric potential for a station-

ary point charge, the formula was calculated for an extra-dimensional warped space. When

compared to the classical formula for the electric potential of a stationary point charge, it

is clear that the warping of the space and the extra dimensions have an effect on this law of

physics.

The next step of this project would be to examine the effect of other types of field content

on the metric. In this project, only the effect of a single scalar was examined. The same

methods could be used to include a vector field, a tensor field, or any other higher rank field

in the energy momentum tensor and examine the effect on the metric. Some combination

of these fields may affect the metric in such a way that the metric has a natural boundary

that closes off at one end. This would require the radius of the x5 dimension to go to 0 at
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some value of x4 < c while still maintaining the energy hierarchy needed to stay consistent

with the Randall-Sundrum model.
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